
Gitlytics: A Framework for Analyzing Git-based
Software Development Collaboration

Jake Gutierrez
Department of Math and Computer Science

Southwestern University
Georgetown, Texas, USA

gutierr8@southwestern.edu

Dr. Dilma Da Silva
Department of Computer Science and Engineering

Texas A&M University
College Station, Texas, USA

dilma@cse.tamu.edu

Abstract—Github is a site where users can host code
repositories using the Git version control system. Github
is widely adopted in industry and in project-based un-
dergraduate courses such as Software Engineering or
Senior Design Capstone. Github provides analytics for
public repositories for its main site and Enterprise editions.
When instructors require students to utilize Github for
assignments, they can leverage data analytics to reveal
patterns in how students develop their solutions. They
can also detect patterns of team collaboration requiring
intervention. However, making repositories public is not
desirable in academic settings due to plagiarism. In this
project, we develop a framework to advance the use
of Github in academic settings. We developed a web
application to visualize multiple Github repositories in one
place.

I. INTRODUCTION

Github is a popular code hosting website utilizing the
Git version control system. Github provides user profiles
to see each other’s code repositories as well as an issue
tracker, branch management, forks and merging one
repository to another via pull requests. A team utilizing
Github would benefit from having their code to easily
see how much each team member is contributing to
their repository. Github also provides an interface where
members can see how much each of their members is
contributing in the form of additions and deletions of
lines of code.

Github’s usefulness has proved itself in higher edu-
cation by being used in high-level, or even lower-level
[1], undergraduate courses. However, when faculty use
Github they find themselves wondering how can they see
contribution without having to go to every individual
repository. Additionally, private repositories might be
needed and Github does not provide analysis and visual-
ization if the repository is private. As a solution, a web

application was created to collect Github repository data
to easily visualize collaboration.The data is collected into
a repository that can integrate other data sources related
to student code development activities.

II. PREVIOUS WORK

Github recognized that universities were using its ser-
vices in their courses so they created Github Classrooms.
Classrooms provides functionality similar to that of a
learning management system, but with support to track
and generate repositories specific to a classroom with
support for individual and group repositories. Class-
rooms also has auto-grade functionality. This allows
faculty and TAs access to private repositories to see
how students are working, however it does not provide
analytics like a public repository. Additionally, Github
Classrooms only works with Github’s main site and not
Github Enterprise, i.e., instances of GitHub hosted within
the university’s network.

Regarding previous work in academia, there has been
work done by analyzing GitLab (a service similar to
Github) repositories[2]. The purpose was to analyze
GitHub data to find gaps in the student’s software
engineering skills. The researchers processed data from
a Continuous Integration/Delivery framework such as
Jenkins, issue tracker data from GitLab and data from
the Git repository itself.

There was previous work done in this area at Texas
A&M University[3]. A script was used to pull data from
specific Github Enterprise repositories. The problem with
this method was that the repositories must have followed
a specific naming scheme so that the script can find
it. These naming schemes were not followed some of
the time resulting in incomplete data. This work is the
primary inspiration for this research.



There is also another web application under the same
name “gitlytics” where the main focus is on industry
users of Github or another service such as GitLab or
Bitbucket. This website was able to pull Git repositories
from those service or from a custom URL and run
analytics and visualize them. A potential problem with
this method is that it has to download a whole repository,
which may be large (>500 mb) in some cases and would
be costly in a production environment. However, the
idea of using any Git repository is something to look
into in the future. Additionally, the specific use case of
this project is to use in conjunction with Texas A&M
University’s Github Enterprise server.

III. DESIGN AND IMPLEMENTATION

The “gitlytics” for this research is a full-stack web
application. This means that there are at least two
different parts, a front-end and a back-end. The front-end
is responsible for taking information from the back-end
and displaying it to the end-user in a friendly manner.
The back-end takes data from the database and turns it
into a response that the front-end can understand. While
there are front-end libraries that can communicate with a
database, this project required functionality from a back-
end server that the front-end can not provide.

A. Front-end

The front-end of this project was created using Re-
act.js1, a popular JavaScript framework created by Face-
book. React.js offers several data-visualization libraries
for the framework. To speed the development process, we
used Material-UI2, a UI framework for React.js based on
Google’s Material Design specification.

B. Back-end

The back-end communicated with the front-end via
a REST (REpresentational State Transfer) API. This
means that it uses JSON documents to send information
to the front-end. REST is a standard used by a majority
of companies and is what Github uses for their API. The
back-end is written in Python using a micro-framework
called Flask3. Flask is small and provides plenty of
extensions via PIP modules to build a prototype for this
project.

For the database, going with a relational database
would make the most sense due to the relational nature of
our database design, from the courses and projects to the

1https://reactjs.org
2https://material-ui.com
3https://flask.palletsprojects.com

User Github gitlytics

Push commits POST /webhook

Fig. 1. Example of a webhook when a User pushes to a repository

students and groups. For a database, PostgreSQL4 was
used since it provides aggregation functions and other
functions helpful for our purposes.

To get data from Github, we use the user’s Github
credentials to get their repository commit data. Github
webhooks are also utilized to get commit data whenever
a user pushes commits to a repository. Using webhooks
avoids having to actively call Github’s API periodically
for updates (e.g., every hour or so.) Calling Github’s
API for commit data has proved to be time consuming
as we have to call the API for each individual commit for
each repository to get the necessary data. Since getting
commit data is time consuming, the server uses Celery5

along with Redis6 to run background tasks as to not lock
up the main server.

C. Design

The database design closely resembles a typical learn-
ing management system design. Users can create courses
and invite existing Github users to them. In a course, they
can create projects with a name, description, start and
end date, and a type. Types tell us how the students will
be working in their repositories whether it is individual
or group. If a group type is specified, then they can
determine groups through a drag-and-drop interface.
Once a course is created, students can assign their Github
repository as a group or individually, depending on the
project type. When a repository is assigned, a Github
webhook is created for the repository.

Whenever a webhook is sent to the back-end, com-
mit’s SHA (a unique ID) and repository name is stored.
After the initial commit data is stored in the database,
a background task is called through Celery to get more
information about the commit such as the additions and
deletions.

4https://www.postgresql.org
5https://docs.celeryproject.org
6https://redis.io



D. Implementation

The front-end uses a data visualization library called
Recharts7 which provides functionality for making very
simple to complex charts. The library also supports
legends and synced tooltips. Synced tooltips are a way to
see multiple tooltips on multiple charts while hovering
a cursor on just one. For instance, there is a chart to
visualize the number of commits for each contributor
per day, and there is a chart for the number of additions
and deletions for a contributor per day. The x-axis for
both have the same date-range and the same number of
points. While one user is hovering over the chart to see
the number of contributions, they can simultaneously see
the number of additions and deletions a contributor has
without having to go back and forth between the two.
An example of the interface is shown in Fig. 2.

The back-end utilizes pandas8, a popular analytics
library for Python. Pandas was used to process data from
the database in a format that Recharts can understand.

IV. FUTURE WORK

As of the moment, “gitlytics” is running on an AWS
Lightsail virtual private server. AWS Lightsail provides
cheap VPSs that are great for small to medium sized
projects. “gitlytics” is running using Docker Compose,
a helpful development tool utilizing Docker containers.
Docker Compose is not recommended for production
use since it can not run more instances of the same
container. In order to scale well, an option would be to
use AWS Elastic Beanstalk, a service similar to Docker
Compose but it provides automatic scaling of its’ con-
tainers. Another solution would be to use Kubernetes9,
a popular container orchestration software. Kuberenetes
utilizes Docker containers into ”pods” that can be scaled
automatically. Kuberentes has proved itself in production
environments[4] so it would be ideal to eventually move
to Kuberenetes.

One of the reasons Flask was used is that it provided
easy to use OAuth2 libraries. However if these libraries
were used, we could not use a front-end Javascript
framework like React.js since we would be using Flask’s
HTML rendering engine. So we started using Flask
expecting to use the rendering engine, however it proved
to be difficult as it was not as flexible as React.js. So
Flask was used despite not using the rendering engine
anymore. If we were creating a REST API from the start,

7http://recharts.org
8https://pandas.pydata.org
9https://kubernetes.io

another Python web framework would be used called
FastAPI10. FastAPI is specifically for creating REST
APIs and is faster compared to Flask.

V. CONCLUSION

This report details the work of a web application that
collects collaboration data from Github to be viewed
by faculty to look at collaboration of a programming
assignment, similar to that of a Capstone project. The
web application is full-stack with React.js as the front-
end and with Flask as the back-end. To collect data,
GitHub’s API and webhooks were utilized to get commit
data for each repository. The data is then process and
is able to served to the front-end via a REST API and
visualize using Recharts. The web application supports
logins via Github, course and project creation.

ACKNOWLEDGMENT

The work of Jake Gutierrez was supported by the
Distributed Research Experiences for Undergraduates
(DREU) program, a project of CRA-W and the Coalition
to Diversify Computing (CDC). Jake Gutierrez would
like to thank AccessComputing, a sponsor for the DREU
program.

REFERENCES

[1] G. Sprint and J. Conci, “Mining github classroom commit
behavior in elective and introductory computer science courses,”
J. Comput. Sci. Coll., vol. 35, no. 1, p. 76–84, Oct. 2019.

[2] J. C. C. Rı́os, K. Kopec-Harding, S. Eraslan, C. Page,
R. Haines, C. Jay, and S. M. Embury, “A methodology
for using gitlab for software engineering learning analytics,”
in Proceedings of the 12th International Workshop on
Cooperative and Human Aspects of Software Engineering, ser.
CHASE ’19. IEEE Press, 2019, p. 3–6. [Online]. Available:
https://doi.org/10.1109/CHASE.2019.00009

[3] C. M. Smith, “A toolset for mining github repositories in
educational software projects,” Aug 2018. [Online]. Available:
http://hdl.handle.net/1969.1/173656

[4] J. Shah and D. Dubaria, “Building modern clouds: Using docker,
kubernetes google cloud platform,” in 2019 IEEE 9th An-
nual Computing and Communication Workshop and Conference
(CCWC), 2019, pp. 0184–0189.

10https://fastapi.tiangolo.com



Fig. 2. A screenshot of the “gitlytics” interface. A dropdown at the top allows faculty/course owners to switch between multiple repositories
within a project. Students will be able to see this page without the dropdown and will see their assigned repository be default. The first chart
provides a simple number of commits over time per contributor. The second chart is an area chart for the number of deletions and additions
(per day) over time for each contributor. One can change which contributor they are looking at by the dropdown next to the title. The third
chart is a donut chart to see commits for each contributor.


